Answer:
![\displaystyle f'(x) = 8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qx91kl9naswih0za8bufo6kzoat96yoarg.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2021/formulas/mathematics/college/kqosumt4896r7x44jgtw0o7kk6g4d3irvr.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify
![\displaystyle f(x) = 8x + 7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/raejyzin1g7t8k2otl6ztyyelj30onpxne.png)
Step 2: Differentiate
- Derivative Property [Addition/Subtraction]:
![\displaystyle f'(x) = (d)/(dx)[8x] + (d)/(dx)[7]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y7swsmluv7go15watsqckpwmeceqsfy6m7.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = 8(d)/(dx)[x] + (d)/(dx)[7]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wyxfzmpn4picgfrbo4rqfh95m2jk4q4q09.png)
- Basic Power Rule:
![\displaystyle f'(x) = 8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qx91kl9naswih0za8bufo6kzoat96yoarg.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation