θ is in quadrant I, so cos(θ) and sin(θ) and hence tan(θ) are all positive.
Recall that
sec²(θ) = 1 + tan²(θ)
We have
cos(θ) = 2/√14 ⇒ sec(θ) = √14/2 = √(7/2)
Then
tan(θ) = +√(sec²(θ) - 1) = √(5/2)
Also recall the identities
sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
cos(x + y) = cos(x) cos(y) - sin(x) sin(y)
from which we get
tan(x + y) = (sin(x) cos(y) + cos(x) sin(y)) / (cos(x) cos(y) - sin(x) sin(y))
tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x) tan(y))
so that
tan(2θ) = 2 tan(θ) / (1 - tan²(θ)) = -(2√10)/3