Answer: B.
.
Explanation:
- In a right triangle, the ratios of its sides are called trigonometric ratios.
- The three common trigonometric ratios are the sine (sin), cosine (cos), and tangent (tan).
We have given ,
.
Then,
![\cos\theta =√(1-\sin^2\theta)\ [\because\ \sin^2A+\cos^2A=1]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fwjg42j1fzyoskbwa309whq1m6f8hua2bw.png)
Put value of
, we get
![\Rightarrow\ \cos\theta=\sqrt{1-((4)/(5))^2}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yogjr4diakilvcrs0kyr8884b7qpre7093.png)
![\Rightarrow=\sqrt{1-(16)/(25)}=\sqrt{(25-16)/(25)}=\sqrt{(9)/(25)}=(3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/18hbdmoad3o9syh1xeebogd0w33gnc6dqp.png)
Now , as we know ,
![\tan\theta=(\sin\theta)/(\cos\theta)=((4)/(5))/((3)/(5))=(4)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wwyin0mqsnhs6i51nt74achgijgdpahd61.png)
Hence, the correct option is B.
.