93.0k views
0 votes
In ΔPQR, the measure of ∠R=90°, RQ = 80, PR = 39, and QP = 89. What is the value of the tangent of ∠Q to the nearest hundredth?

2 Answers

2 votes

Answer:

56

Explanation:

In ΔPQR, the measure of ∠R=90°, RQ = 80, PR = 39, and QP = 89. What is the value of the tangent of ∠Q to the nearest hundredth?

User Josephmisiti
by
4.4k points
3 votes

We have been given that in ΔPQR, the measure of ∠R=90°, RQ = 80, PR = 39, and QP = 89. We are asked to find the value of the tangent of ∠Q to the nearest hundredth.

First of all, we will draw a right triangle with our given information.

We know that tangent relates opposite side of right triangle with its adjacent side.


\text{tan}=\frac{\text{Opposite}}{\text{Adjacent}}

We can see from our diagram that opposite side to angle Q is 39 and adjacent side to angle Q is 80.


\text{tan}(Q)=(39)/(80)


\text{tan}(Q)=0.4875

Upon rounding to nearest hundredth, we will get:


\text{tan}(Q)\approx 0.49

Therefore, the value of tangent of Q is approximately 0.49 units.

In ΔPQR, the measure of ∠R=90°, RQ = 80, PR = 39, and QP = 89. What is the value of-example-1
User Nwaxgui
by
3.5k points