218k views
5 votes
I know you want to answer this question.

I know you want to answer this question.-example-1
User Bob Kusik
by
5.1k points

1 Answer

1 vote

Answer:

D. x = 3

Explanation:


(1)/(2) ^(x-4) - 3 =
4^(x-3) - 2

First, convert
4^(x-3) to base 2:


4^(x-3) =
(2^(2))^(x-3)


(1)/(2) ^(x-4) - 3 =
(2^(2))^(x-3) - 2

Next, convert
(1)/(2) ^(x-4) to base 2:


(1)/(2) ^(x-4) =
(2^(-1))^(x-4)


(2^(-1))^(x-4) - 3 =
(2^(2))^(x-3) - 2

Apply exponent rule:
(a^(b))^(c) =
a^(bc):


(2^(-1))^(x-4) =
2^(-1*(x-4))


2^(-1*(x-4)) - 3 =
(2^(2))^(x-3) - 2

Apply exponent rule:
(a^(b))^(c) =
a^(bc):


(2^(2))^(x-3) =
2^(2(x-3))


2^(-1*(x-4)) - 3 =
2^(2(x-3)) - 2

Apply exponent rule:
a^(b+c) =
a^(b)
a^(c):


2^(-1(x-4)) =
2^(-1x) *
2^(4),
2^(2(x-3)) =
2^(2x) *
2^(-6)


2^(-1 * x) *
2^(4) - 3 =
2^(2x) *
2^(-6) - 2

Apply exponent rule:
(a^(b))^(c) =
a^(bc):


2^(-1x) =
(2^(x))^(-1),
2^(2x) =
(2^(x))^(2)


(2^(x))^(-1) *
2^(4) - 3 =
(2^(x))^(2) *
2^(-6) - 2

Rewrite the equation with
2^(x) = u:


(u)^(-1) *
2^(4) - 3 =
(u)^(2) *
2^(-6) - 2

Solve
u^(-1) *
2^(4) - 3 =
u^(2) *
2^(-6) - 2:


u^(-1) *
2^(4) - 3 =
u^(2) *
2^(-6) - 2

Refine:


(16)/(u) - 3 =
(1)/(64)
u^(2) - 2

Add 3 to both sides:


(16)/(u) - 3 + 3 =
(1)/(64)
u^(2) - 2 + 3

Simplify:


(16)/(u) =
(1)/(64)
u^(2) + 1

Multiply by the Least Common Multiplier (64u):


(16)/(u) * 64u =
(1)/(64)
u^(2) + 1 * 64u

Simplify:


(16)/(u) * 64u =
(1)/(64)
u^(2) + 1 * 64u

Simplify
(16)/(u) * 64u:

1024

Simplify
(1)/(64)
u^(2) * 64u:


u^(3)

Substitute:

1024 =
u^(3) + 64u

Solve for u:

u = 8

Substitute back u =
2^(x):

8 =
2^(x)

Solve for x:

x = 3

User Gregor Scheidt
by
4.7k points