11.4k views
1 vote
Which expressions are equivalent to 42-5? Choose all the correct answers. Show your work in arriving at your answers.

Which expressions are equivalent to 42-5? Choose all the correct answers. Show your-example-1
User K F
by
3.1k points

2 Answers

4 votes

Check one by one

#A


\\ \rm\Rrightarrow 42^(-3)42^8=42^(-3+8)=42^5

#B


\\ \rm\Rrightarrow (42^(-7))/(42^(-2))=42^(-7+2)=42^(-5)\checkmark

#C


\\ \rm\Rrightarrow (6^(-5))/(7^5)=6^(-5)7^(-5)=42^(-5)\checkmark

#d


\\ \rm\Rrightarrow 42^0.42^5=42^(0+5)=42^5

#e


\\ \rm\Rrightarrow \left((1)/(42^(-5))\right)^(-1)=42^(-5)\checkmark

#f


\\ \rm\Rrightarrow \left((6^(-5))/(7^5)\right)^(-1)


\\ \rm\Rrightarrow (42^(-5))^(-1)


\\ \rm\Rrightarrow 42^5

User Bramha Ghosh
by
2.9k points
6 votes

Answer:

B, C, E

Explanation:

Exponent Rules


a^b \cdot a^c=a^(b+c)


(a^b)/(a^c)=a^(b-c)


a^n \cdot b^n=(ab)^n


a^0=1


(1)/(a^b)=a^(-b)


(a^b)^c=a^(bc)


\textsf{A}\quad42^(-3) \cdot 42^8=42^(-3+8)=42^5


\textsf{B}\quad (42^(-7))/(42^(-2))=42^(-7-(-2))=42^(-5)


\textsf{C}\quad (6^(-5))/(7^5)=6^(-5) \cdot 7^(-5)=(6 \cdot 7)^(-5)=42^(-5)


\textsf{D}\quad 42^0 \cdot 42^5=1 \cdot 42^5=42^5


\textsf{E}\quad \left((1)/(42^(-5))\right)^(-1)=(42^5)^(-1)=42^(-5)


\textsf{F}\quad \left((6^(-5))/(7^5)\right)^(-1)=\left(6^(-5) \cdot 7^(-5)\right)^(-1)=\left(\left(6 \cdot 7\right)^(-5)\right)^(-1)=42^(-5(-1))=42^5

User Alexandru R
by
3.2k points