Replace
:
![\displaystyle \int_0^(\frac\pi2) \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \int_0^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx](https://img.qammunity.org/2023/formulas/mathematics/college/50axl1v7vliqiunll6b89g919893jzldpe.png)
Split the integral at x = 1, and consider the latter one over [1, ∞) in which we replace
:
![\displaystyle \int_1^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx = \int_0^1 \frac{\ln\left(\frac1x\right)}{\sqrt[3]{x} \left(1+\frac1{x^2}\right)} (dx)/(x^2) = - \int_0^1 \frac{\ln(x)}{\sqrt[3]{x} (1+x^2)} \, dx](https://img.qammunity.org/2023/formulas/mathematics/college/jt0zupae2elijm89e0z4x84ojhgeij2dl3.png)
Then the original integral is equivalent to
![\displaystyle \int_0^1 (\ln(x))/(1+x^2) \left(\sqrt[3]{x} - \frac1{\sqrt[3]{x}}\right) \, dx](https://img.qammunity.org/2023/formulas/mathematics/college/jpwn8wvw55kxp4zlcfdr4jz3rzfkbjpx7z.png)
Recall that for |x| < 1,

so that we can expand the integrand, then interchange the sum and integral to get

Integrate by parts, with



Recall the Fourier series we used in an earlier question [27217075]; if
where 0 ≤ x ≤ 1 is a periodic function, then



Evaluate f and its Fourier expansion at x = 1/2 :



So, we conclude that
![\displaystyle \int_0^(\frac\pi2) \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \frac94 * (2\pi^2)/(27) = \boxed{\frac{\pi^2}6}](https://img.qammunity.org/2023/formulas/mathematics/college/djvhdy86r4xtax7ay9qkta4sdt8244xznl.png)