78.6k views
3 votes
Simplifying Complex fractions using any method

Simplifying Complex fractions using any method-example-1
User Pcarter
by
9.4k points

2 Answers

3 votes

Answer:

3ab/(b+a)

Explanation:

Simplifying the numerator:

3/a - 3/b

3[1/a - 1/b]

Lcm is ab

3[(b - a)/ab]

Simplifying the denominator:

1/a² - 1/b²

Lcm: a²b²

(b² - a²)/(a²b²)

(b - a)(b + a)/(a²b²)

Numerator ÷ denominator

3[(b - a)/ab] ÷ (b - a)(b + a)/(a²b²)

3[(b - a)/ab] × a²b²/[(b - a)(b + a)]

3ab/(b + a)

User RoshanKumar Mutha
by
8.7k points
0 votes

Answer:

3ab

-------------------

(b+a)

Explanation:

3/a - 3/b

-------------------

1/a^2 - 1/b^2

Multiply the top and bottom by a^2 b^2/ a^2/b^2 to clear the fractions

(3/a - 3/b) a^2 b^2

-------------------

(1/a^2 - 1/b^2) a^2b^2

3ab^2 - 3 a^2 b

-------------------

b^2 - a^2

Factor out 3ab on the top

3ab( b-a)

-------------------

b^2 - a^2

The bottom is the difference of squares

3ab( b-a)

-------------------

(b-a) (b+a)

Cancel like terms from the top and bottom

3ab

-------------------

(b+a)

User Sammarcow
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories