103k views
4 votes
PLEASE PLEASE HELP!!

If 180°<α<270°, cos⁡ α=−8/17, 270°<β<360°, and sin⁡ β=−4/5, what is sin⁡(α+β)?

User Mwittrock
by
5.3k points

1 Answer

5 votes

Answer:

sin⁡(α+β) = -13/85

Explanation:

If 180°<α<270°, cos⁡ α=−8/17, 270°<β<360°, and sin⁡ β=−4/5, what is sin⁡(α+β)?

We should use the trig formula for sin⁡(α+β)

sin⁡(α+β) = (sin α) (cos β) + (cos α)(sin β)

the hypotenuse is 17.... use Pythagorean theorem 8^2 + x^2 = 17^2

x= 15

then sin ( alpha) = -15/17

cos β = 3/5 since cosine is positive in the 4rth quadrant

and from the 3-4-5 triangle

sin⁡(α+β) = (sin α) (cos β) + (cos α)(sin β)

sin⁡(α+β) = (-15/17)*(3/5) + (-8/17) *(-4/5)

sin⁡(α+β) = [ -45 + 32 ] / 85 = -13/85

sin⁡(α+β) = -13/85

User Nimrodp
by
5.9k points