![(\mathrm dy)/(\mathrm dx)=(y+2)^2\sin\left(\frac xe\right)](https://img.qammunity.org/2021/formulas/mathematics/college/a4rjlpga7c0d2l06ep7ax79ye99x8nk8n3.png)
a. If
, then
, so
![0=(k+2)^2\sin\left(\frac xe\right)\implies (k+2)^2=0\implies k=-2](https://img.qammunity.org/2021/formulas/mathematics/college/1xl7j30bya8uwpaacuxw5fu75jbqp2m4xu.png)
b. When
, we're told
has a horizontal tangent, which has slope
. So we have
![0=(y+2)^2\sin\left(\frac we\right)\implies\sin\left(\frac we\right)=0\implies\frac we=2n\pi\implies w=2ne\pi](https://img.qammunity.org/2021/formulas/mathematics/college/kbpifn5j5k5fzcz2mqnodtg6eyg9tv4vb8.png)
where
is any integer, whose smallest positive value occurs for
, giving
.
c. The equation is separable:
![(\mathrm dy)/((y+2)^2)=\sin\left(\frac xe\right)\,\mathrm dx](https://img.qammunity.org/2021/formulas/mathematics/college/jrznt8z4l0ccvlsdoi31u83fy576b1emf9.png)
Integrate both sides to get
![-\frac1{y+2}=-e\cos\left(\frac xe\right)+C](https://img.qammunity.org/2021/formulas/mathematics/college/2g1ta1dh5sa1l16bmv9oif981gpijfsxe6.png)
when
, so we find
![-1=-e+C\implies C=e-1](https://img.qammunity.org/2021/formulas/mathematics/college/kpi8e4dbjcfy0kbbohrkdobdysumtve7m1.png)
Then the particular solution to the DE is
![-\frac1{y+2}=-e\cos\left(\frac xe\right)+e-1\implies y=\frac1{e\left(\cos\left(\frac xe\right)-1\right)+1}-2](https://img.qammunity.org/2021/formulas/mathematics/college/elv9ux75dh6i1k0k73ozfecnbomqcl5r6f.png)