127k views
4 votes
Solve : 4-3sec²A = 0​

Solve : 4-3sec²A = 0​-example-1
User Iago Bruno
by
7.7k points

1 Answer

9 votes

Answer:


\sf\:Negative = \boxed{\sf\:\theta =\pi n_(1)+(5\pi )/(6)\text{, }n_(1)\in \mathbb{Z}}\\\sf\: Positive = \boxed{\sf\:\theta =\pi n_(1)+(\pi )/(6)\text{, }n_(1)\in \mathbb{Z}}

Explanation:


4 - 3 \sec ^ { 2 } \theta = 0

Let's solve this.

Isolate sec²θ.


4 -3 \sec ^ { 2 } \theta = 0\\- 3 \sec^(2)\theta = -4\\3 \sec^(2)\theta=0\\\sec^(2) \theta=(4)/(3)

Now, we now that, cos θ is the reciprocal of sec θ. Therefore,


\sec^(2)\theta = (4)/(3)\\\cos^(2)\theta = (3)/(4)

Bring the square root on both the sides of the equation to remove the square.


\sqrt{\cos^(2)\theta} = \sqrt{(3)/(4) }\\\cos^(2)\theta = (+/-) (√(3) )/(2)

If,


\cos\theta = + (√(3))/(2)\\= cos \left( (\pi)/(6) \right)\\\Longrightarrow \boxed{\sf\:\theta =\pi n_(1)+(\pi )/(6)\text{, }n_(1)\in \mathbb{Z}}

Also if,


\cos\theta = -(√(3))/(2)\\= \cos \left(\pi - (\pi)/(6)\right)\\= \cos \left({(5\:\pi)/(6)\right)\\\Longrightarrow \boxed{\sf\:\theta =\pi n_(1)+(5\pi )/(6)\text{, }n_(1)\in \mathbb{Z}}


\rule{150pt}{2pt}

Solve : 4-3sec²A = 0​-example-1
User Jared Levy
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories