Answer:
109 Employees
Explanation:
Total Number of Employees, Universal Set=128
Key: P=Climb poles, T=Cut down trees, W=Splice wire
![n(P\cup T \cup W)'=10\\n(P \cap T \cap W')=25\\n(P' \cap T \cap W)=31\\n(P \cap T \cap W)=18\\n(P' \cap T \cap W')=4\\n(P' \cap T' \cap W)=3](https://img.qammunity.org/2021/formulas/mathematics/college/awqz1a563q0juo7tn2cc5fuapfhbaibo6d.png)
Since 9 can do exactly one of the three.
![n(P' \cap T \cap W')+(P' \cap T' \cap W)+n(P \cap T' \cap W')=9\\4+3+n(P \cap T' \cap W')=9\\n(P \cap T' \cap W')=9-7\\$Number of those who climb pole only, n(P \cap T' \cap W')=2](https://img.qammunity.org/2021/formulas/mathematics/college/gc43cwdt99iq85poydtyiy4lgq5jo3gq1s.png)
![U=n(P \cap T' \cap W')+n(P' \cap T' \cap W)+n(P' \cap T \cap W')+n(P \cap T \cap W')\\+n(P' \cap T \cap W)+n(P \cap T' \cap W)+n(P \cap T \cap W)+n(P\cup T \cup W)'](https://img.qammunity.org/2021/formulas/mathematics/college/17gfqgcitz25yczen96n321tfzuydazvpy.png)
![128=2+3+4+25+n(P' \cap T \cap W)+31+18+10\\128=93+n(P' \cap T \cap W)\\n(P' \cap T \cap W)=128-93=35](https://img.qammunity.org/2021/formulas/mathematics/college/6s5z9240kvm0j5rebbbq12k7a3lpct2tbe.png)
Number of Employees who can do at least two of the jobs
![=n(P \cap T \cap W')+n(P' \cap T \cap W)+n(P \cap T' \cap W)+n(P \cap T \cap W)\\=25+35+31+18\\=109](https://img.qammunity.org/2021/formulas/mathematics/college/jjemavdabxytjkkcie42my447ufja6q2u1.png)
109 Employees can do at least two of the jobs.
OR
- 9 can do exactly one job
- 10 cannot do any one of the jobs
Therefore: Number who can do at least two jobs
=128-(10+9)=109