170k views
2 votes
A copper rod is sliding on two conducting rails that make an angle of 19o with respect to each other, as in the drawing. The rod is moving to the right with a constant speed of 0.60 m/s. A 0.63-T uniform magnetic field is perpendicular to the plane of the paper. Determine the magnitude of the average emf induced in the triangle ABC during the 7.5-s period after the rod has passed point A.

1 Answer

5 votes

Answer:

0.2923 V

Step-by-step explanation:

Given that

Angle between the rails, θ = 19°

Speed of the rod, v = 0.6 m/s

Magnetic field present, B = 0.63 T

Time used, t = 7.5 s

E = -ΔΦ/Δt

where, Φ = BA, so

E = -BΔA / Δt

To get the area, if we assume the rails are joined in a triangular fashion(see attachment)

E = -B(1/2 * AC * BC) / Δt

E = -B(vΔt * vΔt tanθ) / 2Δt

E = -(B * v² * Δt² * tanθ) / 2Δt

E = -Bv²Δt.tanθ/2

E = -(0.63 * 0.6² * 7.5 * tan 19) / 2

E = -0.5857 / 2

E = -0.2923

Thus, the magnitude of average emf induced if 0.2923 V

A copper rod is sliding on two conducting rails that make an angle of 19o with respect-example-1
User Updater
by
4.5k points