Answer:
![(6)/(65)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nby6mb8f5d779cxwxq9vrb9nho6ieumtmb.png)
Explanation:
![((1)/(2)-(2)/(5) )/((1)/(3)+(3)/(4))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v036808gv9ni04ab0rkm38s3m32tnjr2hb.png)
Let's solve each separately.
![(1)/(2)-(2)/(5)=((1)(5)-(2)(2))/((2)(5)) =(5-4)/(10) =(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xxrc7zzn38mwexm43t7g5yy61bwkrsi8bt.png)
![(1)/(3)+(3)/(4)=((1)(4)+(3)(3))/((3)(4)) =(4+9)/(12) =(13)/(12)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4oo6ozg526szod3h7dodjjp0hdgkbi6gso.png)
This leaves the fraction as;
![((1)/(10) )/((13)/(12) )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2a3t8zaj4j9m8qzacjt5yk0bt2qa9wj37z.png)
To get rid of the fraction in the denominator, multiply by its reciprocal. The reciprocal of a fraction is the same fraction but inverted.
![((1)/(10) )/((13)/(12) )*(12)/(13)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bt1duh3fniz6qsnv6wx4xixm69coeuozmq.png)
This will eliminate the denominator, leaving the fraction like;
![(1)/(10)*(12)/(13)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2w1bo5s8vqtuoxzu8nwy3eek5tner96fv4.png)
12 and 10 can be simplified.
12/2=6
10/2=5
Our new fraction would be;
![(1)/(5)*(6)/(13)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t8yv3j6xxraks6s1cfl8x51pwgaw5scf64.png)
Multiply;
![(6)/(65)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nby6mb8f5d779cxwxq9vrb9nho6ieumtmb.png)