is a geometric sequence, which means consecutive terms occur in a fixed ratio. In other words,
![a_n=ra_(n-1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xhic0fmmcjej0qfef8mk9lp5gp7flrz2mm.png)
for some fixed number
.
Using this rule, we have
![a_5=ra_4](https://img.qammunity.org/2021/formulas/mathematics/high-school/j07skkuhpx4sbh8cgimqdixrombsprcktw.png)
![a_6=ra_5=r(ra_4)=r^2a_4](https://img.qammunity.org/2021/formulas/mathematics/high-school/e0vozim9y06ni1qjn4xwpct4luhcumyfqv.png)
![a_7=ra_6=r(r^2a_4)=r^3a_4](https://img.qammunity.org/2021/formulas/mathematics/high-school/vgcz0ufrlgtpzc9mt49ose8cq2seave3lv.png)
So, given that
and
, we have
![\frac19=3r^3\implies r^3=\frac1{27}\implies r=\frac13](https://img.qammunity.org/2021/formulas/mathematics/high-school/1galzorsvrlygarn9zqofxzuhvzi4o0xco.png)
We can write
in terms of
:
![a_n=ra_(n-1)=r^2a_(n-2)=r^3a_(n-3)=\cdots=r^(n-4)a_4](https://img.qammunity.org/2021/formulas/mathematics/high-school/nx9nh5qal2i7hb4687dvikizaicyc9obo7.png)
(notice how the subscript and exponent add up to
) so the sequence is given by the explicit rule
![a_n=\left(\frac13\right)^(n-4)\cdot3\implies\boxed{a_n=\frac1{3^(n-5)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/7fk7nl4qt3pkbf42j5lsuw1la8k02tmoo1.png)
Incidentally, we can pull out the first term from this sequence by plugging in
to find
.
Next, if
denotes the
th partial sum of the sequence, then
![S_8=a_1+a_2+\cdots+a_8](https://img.qammunity.org/2021/formulas/mathematics/high-school/fta1alqjml3m43xtz58cf1f3y799oxdiuc.png)
For geometric sequences, we can replace
through
with terms containing
:
![S_8=a_1+ra_1+\cdots+r^7a_1=a_1(1+r+\cdots+r^7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/x8dvxly59g9d9ea9x8xxuc8ws8l0i3q9pc.png)
Multiply both sides by
:
![rS_8=a_1(r+r^2+\cdots+r^8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8wdpne5387whfryeel0uwnmtk4bn1iex5j.png)
Subtract
from
; a bunch of terms cancel and we're left with
![S_8-rS_8=(1-r)S_8=a_1(1-r^8)\implies S_8=a_1(1-r^8)/(1-r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/emav8zz49wiy5j9k7cnbwfq20w5u8sbleq.png)
For the sequence at hand, plug in
and
. Then
![S_8=81(1-\left(\frac13\right)^8)/(1-\frac13)\implies\boxed{S_8=(3280)/(27)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/f14j6ketocrld676089qw4772dd3ycof82.png)