Answer:
a
The speed of the particle is
![v = 209485.71 m/s](https://img.qammunity.org/2021/formulas/physics/college/zl2o2ti3633a2tbnjfyc3bgilafb4uxqn7.png)
b
The potential difference is
![\Delta V = 177.2 \ V](https://img.qammunity.org/2021/formulas/physics/college/521gq0jwigwr22ufsvuijqor9d21rgvk5l.png)
Step-by-step explanation:
From the question we are told that
The mass of the particle is
![m = 2.10 *10^(-16) kg](https://img.qammunity.org/2021/formulas/physics/college/sko13l5txdyd21gaompina05a43hnb429s.png)
The charge on the particle is
![q = 26.0 nC = 26.0 *10^(-9) C](https://img.qammunity.org/2021/formulas/physics/college/tsky9zm870ljblqjo2o9x8llvvk895dqhw.png)
The magnitude of the magnetic field is
![B = 0.600 T](https://img.qammunity.org/2021/formulas/physics/college/ygp8fa7nonttn2t9zq4wijhzt7rntxojaa.png)
The magnetic flux is
![\O = 15.0 \mu Wb = 15.0 *10^(-6) Wb](https://img.qammunity.org/2021/formulas/physics/college/w0n3ku37g2dxbwxk62magj0fvjfu0lsesh.png)
The magnetic flux is mathematically represented as
![\O = B *A](https://img.qammunity.org/2021/formulas/physics/college/igcf85mi0w6p49zzasmje0stkyswscqu4t.png)
Where A is the the area mathematically represented as
![A = \pi r^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mzvj129077c0q08xkfp4vyjhv8jrc2oihx.png)
Substituting this into the equation w have
![\O = B (\pi r^2 )](https://img.qammunity.org/2021/formulas/physics/college/ncmb1qecqn9yeu7nzdzql7xlds2mb9cm1o.png)
Making r the subject of the formula
![r = \sqrt{(\O)/(B \pi) }](https://img.qammunity.org/2021/formulas/physics/college/fgkrkkzx2n4gjgmcss2zhoc1ttk0dh9iue.png)
Substituting value
![r = \sqrt{(15 *10^(-6))/(3.142 * 0.6) }](https://img.qammunity.org/2021/formulas/physics/college/oaipy4fkvw44dhfx701hmjgpvaipyxcpor.png)
![r = 2.82 *10^(-3)m](https://img.qammunity.org/2021/formulas/physics/college/zku8v2lbz9w59i98wx9jz6qx0wf5k40mlp.png)
For the particle to form a circular path the magnetic force the partial experience inside the magnetic must be equal to the centripetal force of the particle and this is mathematically represented as
![F_q = F_c](https://img.qammunity.org/2021/formulas/physics/college/1xdx1clvlvi2wzbresvin0hylj1ajamk1q.png)
Where
![F_q = q B v](https://img.qammunity.org/2021/formulas/physics/college/for2obejl18q9mfu6swu741tb5125egr4b.png)
and
![F_c = (mv^2 )/(r)](https://img.qammunity.org/2021/formulas/physics/college/dw58z3s3lhcvrydlqnqxuu3hj8za6txh9x.png)
Substituting this into the equation above
![qBv = (mv^2)/(r)](https://img.qammunity.org/2021/formulas/physics/college/7kkqivva4s31l206qaxmwcf2r62gybpieo.png)
making v the subject
![v = (r q B)/(m)](https://img.qammunity.org/2021/formulas/physics/college/2u59a5sf4odvh83frffsbqup7xsmykf624.png)
substituting values
![v = (2.82 * 10^(-3) * 26 *10^(-9) 0.6)/(2.10*10^(-16))](https://img.qammunity.org/2021/formulas/physics/college/1ygvdpobtdb8vwgpbxafeks5ip3dczo9lz.png)
![v = 209485.71 m/s](https://img.qammunity.org/2021/formulas/physics/college/zl2o2ti3633a2tbnjfyc3bgilafb4uxqn7.png)
The potential energy of the particle before entering the magnetic field is equal to the kinetic energy in the magnetic field
This is mathematically represented as
![PE = KE](https://img.qammunity.org/2021/formulas/physics/college/xad2fxzjw63xjzi4dpo36bc7y2905pwquj.png)
Where
and
![KE = (1)/(2) mv^2](https://img.qammunity.org/2021/formulas/physics/high-school/ddkby0iaivvvk0nbd1jeowc8gth34thwix.png)
Substituting into the equation above
![q \Delta V = (1)/(2) mv^2](https://img.qammunity.org/2021/formulas/physics/college/y6x0od3hc5ds7wpnb08yzychc3tujtrk2h.png)
Making the potential difference the subject
![\Delta V = (mv^2)/(2 q)](https://img.qammunity.org/2021/formulas/physics/college/5jtfo4qgflyvk5h1kgcuk6ke0g5rgxww78.png)
![\Delta V = \frac{2.16 * 10^ {-16} * (209485.71)^2 }{2 * 26 *10^(-9)}](https://img.qammunity.org/2021/formulas/physics/college/juojjkbunxey3ie8lzsrhd9sjp27kecd6p.png)
![\Delta V = 177.2 \ V](https://img.qammunity.org/2021/formulas/physics/college/521gq0jwigwr22ufsvuijqor9d21rgvk5l.png)