Answer:
The angular velocity is
![w = 53.35 \ rounds /minute](https://img.qammunity.org/2021/formulas/physics/college/kr2h9v6xez2s8dea4xle2llappwgzx2qbq.png)
Step-by-step explanation:
From the question we are told that
The mass of the block is
![m = 61.2kg](https://img.qammunity.org/2021/formulas/physics/college/ez1uh601b7haj1hbh9jiqrv311t92shabq.png)
The of the pulley is
![M = 14.2 kg](https://img.qammunity.org/2021/formulas/physics/college/5143bvu68zqokfcvfyh4dzh9us6cdff4zz.png)
The radius of the pulley is
The radius of the cord around the pulley is
![r = 1.5 m](https://img.qammunity.org/2021/formulas/physics/college/bshha6vts9w59g7rp78b6rgd7a66y24jmm.png)
The distance of the block to the floor is
![d = 8.0 m](https://img.qammunity.org/2021/formulas/physics/college/9vd55qyx3tdj72yci5yi5zoi4eni2cyukt.png)
From the question we are told that the moment of inertia of the pulley is
![I = (1)/(2) MR^2 kg \cdot m^2](https://img.qammunity.org/2021/formulas/physics/college/fy6kv75jh0w3eq9iy8ugyezd3k4fbayx27.png)
Substituting value
![I = (1)/(2) * 14.2 * (1.5)^2](https://img.qammunity.org/2021/formulas/physics/college/7h6psq39nk2073muzddfh0gzgl7ewcyq8y.png)
![I = 15.975 kg \cdot m^2](https://img.qammunity.org/2021/formulas/physics/college/a07rhwzyeczvlrjh84n8obgek5pkatpnxm.png)
Using the Newtons law we can express the force acting on the vertical axis as
![ma = mg -T](https://img.qammunity.org/2021/formulas/physics/college/r1rhjdi16fvl4ut2x9i3k323mmc2xdnqgq.png)
=>
![T = mg -ma](https://img.qammunity.org/2021/formulas/physics/college/r34oww4pnbxmly4ddedjndqwr0n84kh84k.png)
Now when the pulley is rotated that torque generated on the massless cord as a r result of the tension T and the radius of the cord around the pulley is mathematically represented as
![\tau = I \alpha](https://img.qammunity.org/2021/formulas/physics/college/634kdt4zveqp1mmaptca00w1ncfhrr9iou.png)
Here
is the angular acceleration
Here
is the torque which can be equivalent to
![\tau = T r](https://img.qammunity.org/2021/formulas/physics/college/k9t1yucxrtxqk0qf6kzkxcepp3rmh9qohl.png)
Substituting this above
Substituting for T
![(mg - ma ) r = I\ r \alpha](https://img.qammunity.org/2021/formulas/physics/college/m0ayvi966ne4m3mje9uckflt2h5mnjf5xu.png)
Here
is the linear acceleration which is mathematically represented as
![a = r\alpha](https://img.qammunity.org/2021/formulas/physics/college/27fe2xridn69v0kiak862u98eyxpvbj55t.png)
![(mg - m(r\alpha ) ) r = I\ r \alpha](https://img.qammunity.org/2021/formulas/physics/college/f8eguxt9xn9hny02fpuh3qtm30j3i944zt.png)
![mgr = I\alpha + m(r\alpha ) r](https://img.qammunity.org/2021/formulas/physics/college/rl0zasttejb2q4nq173kplotejblwcayxv.png)
![mgr = \alpha [ I + mr^2]](https://img.qammunity.org/2021/formulas/physics/college/w59to3406gssdg9gd5hsqzycgn6slx3dm7.png)
making
the subject
Substituting values
![\alpha = (61.2 * 1.5 * 9.8)/(15.975 + (61.2 ) * (1.5)^2)](https://img.qammunity.org/2021/formulas/physics/college/ut7fw2b0f5es3skrscxwugugpqfpz78753.png)
![\alpha =5.854 rad /s^2](https://img.qammunity.org/2021/formulas/physics/college/5mqwlolvp0plnw3fedw14qmj6holpz6c15.png)
Now substituting into the equation above to obtain the acceleration
![a = 5.854 * 1.5](https://img.qammunity.org/2021/formulas/physics/college/pwuq9m8096iw36n794ybhnaeldxstyodh1.png)
![a=8.78 m/s^2](https://img.qammunity.org/2021/formulas/physics/college/fw7ebwoazmgmke4umrmn146cab30fsg3sd.png)
This acceleration is
![a = (v)/(t)](https://img.qammunity.org/2021/formulas/physics/college/pao36cce47qdun6kjx3nifr5dmot9h78yw.png)
and v is the linear velocity with is mathematically represented as
![v = (d)/(t)](https://img.qammunity.org/2021/formulas/physics/high-school/92gvb93xk1w1vccd1h7w180tqnk5ef2mqv.png)
Substituting this into the formula acceleration
![a = (d)/(t^2)](https://img.qammunity.org/2021/formulas/physics/college/e5imdrlyt6uvw3aje68bfi6ath07ma8fs4.png)
making t the subject
![t = \sqrt{(d)/(a) }](https://img.qammunity.org/2021/formulas/physics/college/3sxthvmqvuvnhcmcft946fp28wjnd431vz.png)
substituting value
![t = \sqrt{(8)/(8.78)}](https://img.qammunity.org/2021/formulas/physics/college/a08ep6i8jkcqdm8mdhm192bhl0lptrh08p.png)
![t = 0.9545 \ s](https://img.qammunity.org/2021/formulas/physics/college/vhwlrqbtc1mrqntj98baza68hiwh7xfs8y.png)
Now the linear velocity is
![v = (8)/(0.9545)](https://img.qammunity.org/2021/formulas/physics/college/vypz8zuymuu1j822rdlg94pahowhq84ly2.png)
![v = 8.38 m/s](https://img.qammunity.org/2021/formulas/physics/college/n7ma6swa32nhel3rrs06n0x88jwsy7cf19.png)
The angular velocity is
![w = (v)/(r)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2cnpwh9xca8353bl9vgvvt2dg81fxgn87j.png)
So
![w = (8.38)/(1.5)](https://img.qammunity.org/2021/formulas/physics/college/mbmnzf1cnm5bstnk6rcaz22y2xat92edtp.png)
![w = 5.59 rad/s](https://img.qammunity.org/2021/formulas/physics/college/e2uigacxqjkmi931e5sunjxd15m7virf6r.png)
Generally 1 radian is equal to 0.159155 rounds or turns
So 5.59 radian is equal to x
Now x is mathematically obtained as
![x = (5.59 * 0.159155)/(1)](https://img.qammunity.org/2021/formulas/physics/college/6lhp0jw3mxdqirkxuyea9b0ghvxb8zown2.png)
![= 0.8892 \ rounds](https://img.qammunity.org/2021/formulas/physics/college/8ysbzkb2a7eij6w28b89zlvl4hsb5uneti.png)
Also
60 second = 1 minute
So 1 second = z
Now z is mathematically obtained as
![z = ( 1)/(60)](https://img.qammunity.org/2021/formulas/physics/college/oy4d11s0k6bnc2vymny34fh7ysub4gdz66.png)
z
![= 0.01667 \ minute](https://img.qammunity.org/2021/formulas/physics/college/2scly8n46i92djkznbh9m06agcn62xqlkt.png)
Therefore
![w = (0.8892)/(0.01667)](https://img.qammunity.org/2021/formulas/physics/college/z8ewa6k80cjgjlcjmlo4n5vbjl15du1fuz.png)
![w = 53.35 \ rounds /minute](https://img.qammunity.org/2021/formulas/physics/college/kr2h9v6xez2s8dea4xle2llappwgzx2qbq.png)