Answer:
Induced emf is 0.324 V
Step-by-step explanation:
We have,
Number of turns, n = 61.6
Radius of circular coil, r = 4.44 cm
Resistance of coil, R = 2.34 Ω
The magnitude of the magnetic field varies in time according to the expression :
![B=a_1t+a_2t^2](https://img.qammunity.org/2021/formulas/physics/college/ylz8yp6v6w21va6uangqei5kz1dfjdm7qd.png)
![a_1=0.0411\\\\a_2=0.044](https://img.qammunity.org/2021/formulas/physics/college/5su89p4l1j8ghvxz091xmsnz19743cq1m9.png)
The magnitude of the induced emf in the coil is given by :
![\epsilon=(d\phi)/(dt)\\\\\epsilon=(d(NBA))/(dt)\\\\\epsilon=NA(dB)/(dt)](https://img.qammunity.org/2021/formulas/physics/college/ay1lzmftu73s820ljc7amuj0mu3ekaoo0p.png)
![\epsilon=\pi r^2(dB)/(dt)](https://img.qammunity.org/2021/formulas/physics/college/hp7ieay4tn4gct9t0hbrbj4eqe3a7eqa69.png)
At t = 9.21 s,
![(dB)/(dt)=(0.0411+2* 0.044 * 9.21)\\\\(dB)/(dt)=0.851\ T/s](https://img.qammunity.org/2021/formulas/physics/college/pn7x9he3ray3bdqqysyo01ywcgoxrku8i7.png)
![\epsilon=61.6* \pi * (4.44 * 10^(-2))^2* 0.851](https://img.qammunity.org/2021/formulas/physics/college/5jv9h3sv6q20ydls52bmkxtjb1bjsq78sl.png)
![\epsilon=5.27* 10^(-3)\ V](https://img.qammunity.org/2021/formulas/physics/college/jql5vvqdqqkoyfoqzobw3mylg9ms5ir0jz.png)
So, the magnitude of the induced emf in the coil is 0.324 V