Answer: The concentrations of
at equilibrium is 0.023 M
Step-by-step explanation:
Moles of
=
![\frac{\text {given mass}}{\text {Molar mass}}=(10g)/(71g/mol)=0.14mol](https://img.qammunity.org/2021/formulas/chemistry/college/xwuxe9a8ufg3id9u26ljluqjvxzoi72ubh.png)
Volume of solution = 1 L
Initial concentration of
=
![(0.14mol)/(1L)=0.14M](https://img.qammunity.org/2021/formulas/chemistry/college/m594he9s6i1dj0huzt0av0w07v6a6f91zj.png)
The given balanced equilibrium reaction is,
![COCl_2(g)\rightleftharpoons CO(g)+Cl_2(g)](https://img.qammunity.org/2021/formulas/chemistry/college/ow4gk7wn4h4expg82ipp5uwcmgvwvwmsb4.png)
Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=([CO]* [Cl_2])/([COCl_2])](https://img.qammunity.org/2021/formulas/chemistry/college/3xerdyepbs6wcdoen6yw52icx3gqax6e1l.png)
Now put all the given values in this expression, we get :
![4.63* 10^(-3)=(x)^2)/((0.14-x))](https://img.qammunity.org/2021/formulas/chemistry/college/r0xjbe1roo2e0u7dv8ks1btwpleitgsl41.png)
By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M