31.0k views
1 vote
Descried how to derive the quadratic formula from a quadratic equation in standard form

User Jfowkes
by
8.3k points

1 Answer

4 votes

Answer:

The standard form of a quadratic equation is:


ax^2+bx+c=0,
a\\eq 0

Quadratic Formula Derivation:


ax^2+bx+c=0\\


$x^2+(b)/(a)x+(c)/(a) =0 $


$x^2+(b)/(a)x = -(c)/(a)$

Completing the Square:


$x^2+(b)/(a)x +(b^2)/(4a^2) = (b^2)/(4a^2)-(c)/(a)$


$ ( x+(b)/(2a) )^2 = (b^2-4ac)/(4a^2) $

Square Root property:


$x+(b)/(2a) = \pm \sqrt{ (b^2-4ac)/(4a^2)} $


$x = -(b)/(2a) \pm { \frac{\sqrt {b^2-4ac}}{2a}} $


$x = \frac{-b\pm√(b^2-4ac)} {2a} } $

User Joel Hernandez
by
7.4k points