122k views
0 votes
A factory produces weighted balls to use for exercise by filling spherical rubber shells of different sizes with the sand like material. The materials density is 1.5 grams per centimeter. Assuming the shell weighs 10 grams, what should the balls radius so, when full, it weighs 1 kilogram(or 1000 grams)?

User Arkajit
by
5.0k points

2 Answers

6 votes

Answer:

5.4

Explanation:

Khan-Academy, correct

User Jemma
by
5.3k points
5 votes

Answer:

r=5.4

As mentioned above, the actual \goldE{\text{total quantity}}total quantitystart color #a75a05, start text, t, o, t, a, l, space, q, u, a, n, t, i, t, y, end text, end color #a75a05 is 1000-10=\goldE{990}1000−10=9901000, minus, 10, equals, start color #a75a05, 990, end color #a75a05 grams, since we are trying to find the volume of the air within the shell.

Let's denote the ball's radius as rrr. Then, the \maroonD{\text{volume}}volumestart color #ca337c, start text, v, o, l, u, m, e, end text, end color #ca337c is \maroonD{\dfrac43\pi r^3}

3

4

πr

3

start color #ca337c, start fraction, 4, divided by, 3, end fraction, pi, r, cubed, end color #ca337c.

Now we can plug \blueE{\text{density}=1.5}density=1.5start color #0c7f99, start text, d, e, n, s, i, t, y, end text, equals, 1, point, 5, end color #0c7f99, \goldE{\text{total quantity}=990}total quantity=990start color #a75a05, start text, t, o, t, a, l, space, q, u, a, n, t, i, t, y, end text, equals, 990, end color #a75a05, and \maroonD{\text{volume}=\dfrac43\pi r^3}volume=

3

4

πr

3

start color #ca337c, start text, v, o, l, u, m, e, end text, equals, start fraction, 4, divided by, 3, end fraction, pi, r, cubed, end color #ca337c in the equation.

User Lutfi
by
5.0k points