210k views
5 votes
Find the quotient z1/z2, of the complex numbers. Leave your answer in polar form.

z1 = 20( cos 54° + i sin 54°)
z2 = 5( cos 6° + i sin 69)
Choose the correct answer below.
A. 4(cos 48° + i sin 48°)
B. 4[(cos 54°- cos 6°)+i (sin 54°- sin 6°)]
c. 4{cos 9° + i sin 9°)
D. 4(cos 54° sin 6° + i sin 54° cos 6)​

User JDKot
by
5.1k points

1 Answer

4 votes

Answer:

A: 4(cos 48° + i sin 48°)

Explanation:

The step by step working:

z1 = 20(cos 54° + i sin 54°)

z2 = 5( cos 6° + i sin 69°)

z1/z2 = (20/5)(cos 54° + i sin 54°)/(cos 6° + i sin 69°)

= 4[(cos 54° + i sin 54°)(cos 6° - i sin 6°)] / (cos^2 6° +sin^2 69°)

= 4[(cos 54° cos 6° - sin 54° sin 69°) + i(cos 54°sin 6° + sin 54° cos 6°)]

= 4(cos 48° + i sin 48°) (Using sum and difference identities)

The answer is A: 4(cos 48° + i sin 48°)

User William Rossier
by
5.1k points