165,104 views
30 votes
30 votes
Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (Assume the variable is positive.)

ln z(z − 1)^8, z > 1

User JCJS
by
3.2k points

2 Answers

12 votes
12 votes
  • ln(ab)=lna+lnb


\\ \rm\Rrightarrow lnz(z-1)^8


\\ \rm\Rrightarrow lnz+ln(z-1)^8

  • lna^b=blna


\\ \rm\Rrightarrow lnz+8ln(z-1)

User Surui
by
2.6k points
6 votes
6 votes

Answer:


\ln z + 8\ln (z-1)

Explanation:


\ln z(z-1)^8

Using the product rule:
\ln(xy)=\ln x + \ln y


\implies \ln z + \ln (z-1)^8

Using the power rule:
\ln x^n=n \ln x


\implies \ln z + 8\ln (z-1)

User Tillaert
by
2.9k points