42.6k views
4 votes
Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (Assume the variable is positive.)

ln z(z − 1)^8, z > 1

2 Answers

6 votes
  • ln(ab)=lna+lnb


\\ \rm\Rrightarrow lnz(z-1)^8


\\ \rm\Rrightarrow lnz+ln(z-1)^8

  • lna^b=blna


\\ \rm\Rrightarrow lnz+8ln(z-1)

User Asenar
by
3.4k points
13 votes

Answer:


\ln z + 8\ln (z-1)

Explanation:


\ln z(z-1)^8

Using the product rule:
\ln(xy)=\ln x + \ln y


\implies \ln z + \ln (z-1)^8

Using the power rule:
\ln x^n=n \ln x


\implies \ln z + 8\ln (z-1)

User Parikshita
by
3.4k points