Answer:
![(dA)/(dt) = 78cm/sec](https://img.qammunity.org/2021/formulas/mathematics/college/pb2371mptkfm5nvlzlu7a64pywwlduilkb.png)
The area of the rectangle is increasing at 78cm/sec
Explanation:
Explanation:-
Given the length of a rectangle is increasing at a rate of 3 cm/s
![(dl)/(dt) = 3cm/s](https://img.qammunity.org/2021/formulas/mathematics/college/m4ib6et5fzllqvmabq81s8lsduia6cf1p6.png)
Given the width of a rectangle is increasing at a rate of 9 cm/s
![(dw)/(dt) = 9cm/s](https://img.qammunity.org/2021/formulas/mathematics/college/punq05moqtaunn430in4n1jpzmgfe5z7dp.png)
we know that the area of the rectangle
A = l × w …(l)
Differentiating equation with respective to 't'
![(dA)/(dt) = l ((dw)/(dt) )+ w ((dl)/(dt) )](https://img.qammunity.org/2021/formulas/mathematics/college/rgr2hhcm81ltspv3mhx9k0965lzpiq840p.png)
Given the length of the rectangle = 7 cm and
The width of the rectangle w = 5 cm
![(dA)/(dt) = 7(9)+5(3) = 78](https://img.qammunity.org/2021/formulas/mathematics/college/w8bcwwmug8esm6r19veqctfg64o389z20m.png)
![(dA)/(dt) = 78cm/sec](https://img.qammunity.org/2021/formulas/mathematics/college/pb2371mptkfm5nvlzlu7a64pywwlduilkb.png)
Final answer:-
The area of the rectangle is increasing at 78cm/sec