Answer:
Step-by-step explanation:
velocity of proton v = 1.5 x 10³ i m /s
charge on proton e = 1.6 x 10⁻¹⁹ C
Let the magnetic field be B = Bx i + Bz k
force on charged particle ( proton )
F = e ( v x B )
2.06 x10⁻¹⁶ j = 1.6 x 10⁻¹⁹ [ 1.5 x 10³ i x ( Bx i + Bz k) ]
2.06 x10⁻¹⁶ j = - 1.6 x 10⁻¹⁹ x 1.5 x 10³ Bz j) ]
2.06 x10⁻¹⁶ = - 1.6 x 10⁻¹⁹ x 1.5 x 10³ Bz
Bz = - .8583
force on charged particle ( electron )
F = e ( v x B )
8.40 x10⁻¹⁶ j = -1.6 x 10⁻¹⁹ [ - 4.4 x 10³ k x ( Bx i + Bz k) ]
8.4 x10⁻¹⁶ j = 1.6 x 10⁻¹⁹ x 4.4 x 10³ Bx j ]
- 8.4 x10⁻¹⁶ = 1.6 x 10⁻¹⁹ x 4.4 x 10³ Bx
Bx = - 1.19
Magnetic field = - 1.19 i - .8583 k
magnitude = √ (1.19² + .8583²)
= 1.467 T
If it is making angle θ with x - axis in x -z plane
Tanθ = (.8583 / 1.19 )
36⁰ .
C )
v = - 3.7 x 10³j m /s
e = - 1.6 x 10⁻¹⁶ C
Force = F = e ( v x B )
= -1.6 x 10⁻¹⁹ [ -3.7 x 10³ j x ( Bx i + Bz k) ]
= - 1.6 x 10⁻¹⁹ x 3.7 x 10³ Bx k -1.6 x 10⁻¹⁹ x 3.7 x 10³Bzi ]
= 5.08 i - 7.04 k
Tanθ = 54 ° .