Answer:
Explanation:
a) The function is:

Is is necessary to demonstrate that:
![L[f(t)] = (n!)/((s-a)^(n+1))](https://img.qammunity.org/2021/formulas/mathematics/college/jbwolbukcqpf8jznz5ncvvbzo341y14be5.png)
you can use two identities of Laplace's transforms:
![L[t^n]=(n!)/(s^(n+1))\\\\L[e^(at)g(t)]=G(s-a)\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/xly9xfx8c6osgoebvwzef429wllny2a8d6.png)
By using the previous transforms you obtain:
![L[f(t)] = (n!)/((s-a)^(n+1))](https://img.qammunity.org/2021/formulas/mathematics/college/jbwolbukcqpf8jznz5ncvvbzo341y14be5.png)
b) The other way is to use the following formula:
![L[t^nf(t)]=(-1)^n(d^n)/(ds^n)F(s)](https://img.qammunity.org/2021/formulas/mathematics/college/acc1pot4txu4sh651614plw8rw4q5ucyho.png)
Then, you use the following identities:
![L[e^(at)]=(1)/(s-a)\\\\(d^n)/(ds^n)[(1)/(s-a)]=(-1)^n(n!)/((s-a)^(n+1))](https://img.qammunity.org/2021/formulas/mathematics/college/hqyv55j22bac3hycegk1e7ka7j3y7zfsqu.png)
then, by replacing you obtain:
![L[f(t)] = (n!)/((s-a)^(n+1))](https://img.qammunity.org/2021/formulas/mathematics/college/jbwolbukcqpf8jznz5ncvvbzo341y14be5.png)