Answer:
2.7 W/m^2K
Step-by-step explanation:
Area of pane = 5 m x 6 m = 30 m^2
Solar irradiation Gs = 900 W/m2
Heat rate on panel = Gs x area = 900 x 30 = 27000 W
absorptivity to solar irradiation αs = 0.92
Therefore, absorbed heat is
0.92 x 27000 = 24840 W
For heat gain,
From E = §AT^4
Where § = stefan's constant = 5.7x10^-8 Wm^-2K^-1
T = temperature of panel
24840 = 5.7x10^-8 x 30 x T^4
24840 = 1.71x10^-6 x T^4
1.453x10^10 = T^4
T = 347.167 K
For net heat gain,
From E = §A(T^4 - T^4sur)
24840 = 5.7x10^-8 x 30 x (T^4 - T^4sur)
24840 = 1.71x10^-6 x (1.453x10^10 - T^4sur)
24840 = 24846.3 - 1.71x10^-6(T^4sur)
-6.3 = -1.71x10^-6(T^4sur)
3684210.526 = T^4sur
Tsur = 43.81 K
Also for convective heat,
E = Ah(T - Tsur)
24840 = 30h(347.167 - 43.81)
24840 = 30h x 303.357
81 = 30h
h = 2.7 W/m^2K