Answer:
It will take 18.04s for the rocket to hit the ground.
Explanation:
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
![x_(1) = (-b + √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/oyav4t50gxwlebnxow0jkg1h1wg0cug5v8.png)
![x_(2) = (-b - √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/ab43b5ab1q0isg535d913r7c1xw0asolw7.png)
![\bigtriangleup = b^(2) - 4ac](https://img.qammunity.org/2021/formulas/mathematics/college/zirtrp8pc9sd5ixxvxuq5wacoopj7h2hyk.png)
In this problem:
Height given by the following equation:
![y = -16x^(2) + 281x + 137](https://img.qammunity.org/2021/formulas/mathematics/college/ahqcxhf51kficwz67uqhmx2ei4lba79zmi.png)
It hits the ground when y = 0. So
![-16x^(2) + 281x + 137 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/h6bcxtkc3ae79s9h6zq6dqa2wzxhcpc6j8.png)
Multiplying by -1
![16x^(2) - 281x - 137 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/l7xzio6eq1yj56x4yo261kp0k1b2seqfb9.png)
So
![a = 16, b = -281, c = -137](https://img.qammunity.org/2021/formulas/mathematics/college/t3rmvh963gsw3xups7yi3ps97uzslnk5d4.png)
Then
![\bigtriangleup = (-281)^(2) - 4*16*(-137) = 87729](https://img.qammunity.org/2021/formulas/mathematics/college/fbkjp9bnu93igoswmp596bu2od7msnmrws.png)
![t_(1) = (-(-281) + √(87729))/(2*16) = 18.04](https://img.qammunity.org/2021/formulas/mathematics/college/oy1lbfo83s8cj5p229805t0o6xyyzeq9nh.png)
![t_(2) = (-(-281) - √(87729))/(2*16) = -0.4747](https://img.qammunity.org/2021/formulas/mathematics/college/ubf00eqj2nu95e4derkcxtq4gd61nq2axb.png)
It cannot take negative time, so we discard
![t_(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wma1hwsymd2bvaldsku055jqkamw1aqzfz.png)
It will take 18.04s for the rocket to hit the ground.