Answer:
The population will reach 39,400 after 17 years.
Explanation:
Given that, The population grows at a rate 4%. The population of the town is 20,000 at a certain time.
Exponential function:
![y(t)=y_0(1+r)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7hn84bm98953sj4vqq0qxapyz4xfqyly9k.png)
y(t) = The population after t years
= Initial population.
r = Rate of grow
t = Time.
y(t)= 39400,
= 20,000, r= 4%=0.04, t=?
![39400=20000(1+0.04)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2llmrbvdv2prffzngwjsszr8oixnhigywn.png)
![\Rightarrow (39400)/(20000)=(1.04)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4wozt96vpihn0qn00mr4bj3hd3orss12at.png)
![\Rightarrow (197)/(100)=(1.04)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gkg5mx9xb2g35p4r7nw3gnylpkgkzdrb0g.png)
Taking ln both sides
![\Rightarrow ln|(197)/(100)|=ln|(1.04)^t|](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5nep2s12zpexu5zhyopbcnagqfww1sfdtk.png)
![\Rightarrow ln|(197)/(100)|=t\ ln|(1.04)|](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mpctfvdel694gohiprpozwz8bff5ld6sgn.png)
![\Rightarrow t= (ln|(197)/(100)|)/(ln|(1.04)|)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nm9leka9si3q7tfhh323sgccalouch37xt.png)
![\Rightarrow t\approx 17](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t6wdlm3noed6qym5i3rflltztgb1l4izd8.png)
The population will reach 39,400 after 17 years.