Answer:
The population will reach 20,400 after 6 years.
Explanation:
Exponential function:
![y(t)=y_0(1+r)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7hn84bm98953sj4vqq0qxapyz4xfqyly9k.png)
y(t)= Population after t years
= initial population
r= rate of grow
t= time.
A town has a population of 17,000 and grows at a rate 3% every year.
y(t)= 20,400,
= 17,000, r=3%=0.03, t=?
![20,400=17,000(1+0.03)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s5p8pus8mnk7hlt0ys3etuo58175u8rd4c.png)
![\Rightarrow (20,400)/(17,000)=(1.03)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3gjz2yac18ejugxflqgveufermapjfccaw.png)
![\Rightarrow (102)/(85)=(1.03)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2pfazvrel7iokl7uoy0b119i7m901mw5g5.png)
Taking ln function both sides
![\Rightarrow ln|(102)/(85)|=ln|(1.03)^t|](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yr7dw3pj9y7ibzbc1auibjivsonnumt6pp.png)
![\Rightarrow ln|(102)/(85)|=t\ ln|(1.03)|](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ukdwmw4g1gxe35k6h6pvlpuqt1fyukv6gr.png)
![\Rightarrow t=(ln|(102)/(85)|)/(\ ln|(1.03)|)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/33izqjet8cb011urx6yppn2edh51vu1tq6.png)
⇒ t = 6 year.
The population will reach 20,400 after 6 years.