124k views
4 votes
Element X decays radioactively with a half life of 11 minutes. If there are 870 grams of Element X, how long, to the nearest tenth of a minute, would it take the element to decay to 154 grams?

User Mars Lee
by
4.5k points

2 Answers

6 votes

Answer:

60.6 minutes

Explanation:

--------------------------------

User Abu Saeed
by
4.3k points
6 votes

Answer:

It would take 27.5 minutes the element to decay to 154 grams.

Explanation:

The decay equation:


\frac {dN}{dt}\propto -N


\Rightarrow \R\frac {dN}{dt}=-\lambda N


\Rightarrow \frac {dN}N=-\lambda dt

Integrating both sides


\Rightarrow \int \frac {dN}N=\int-\lambda dt


\Rightarrow ln|N|=-\lambda t+c

When t=0, N=
N_0 = initial amount


ln|N_0|=-\lambda .0+c


\Rightarrow c=ln|N_0|


ln|N|=-\lambda t+ln|N_0|


\Rightarrow ln|N|-ln|N_0|=-\lambda t


\Rightarrow ln|(N)/(N_0)|=-\lambda t

Decay equation:


ln|(N)/(N_0)|=-\lambda t

Given that, the half life of of element X is 11 minutes.

For half life,
N=\frac12 N_0, t= 11 min.


ln|(N)/(N_0)|=-\lambda t


\Rightarrow ln|(\frac12N_0)/(N_0)|=-\lambda . 11


\Rightarrow ln|\frac12}|=-\lambda . 11


\Rightarrow -\lambda . 11=ln|\frac12}|


\Rightarrow \lambda =(ln|\frac12|)/(-11)


\Rightarrow \lambda =(ln|2|)/(11) [
ln|\frac12|=ln|1|-ln|2|=-ln|2| , since ln|1|=0]

N=154 grams,
N_0 = 870 grams, t=?


ln|(N)/(N_0)|=-\lambda t


\Rightarrow ln|(154)/(870)|=-(ln|2|)/(11).t


\Rightarrow t= (ln|(154)/(870)|* 11)/(-ln|2|)

=27.5 minutes

It would take 27.5 minutes the element to decay to 154 grams.

User Adi Barda
by
3.9k points