Answer:
(See explanation below).
Explanation:
Each floor has a height of 3 meters. Then, the number of floors of the cylinder is:
![n = (30\,m)/(3\,m)](https://img.qammunity.org/2021/formulas/mathematics/college/o9w8jjjb28lld02u8yqpuiirclifdodubt.png)
![n = 10\,floors](https://img.qammunity.org/2021/formulas/mathematics/college/fv6msok4tohsfxrtov7tqb9io9kyc2a5lc.png)
Let consider that spiral makes a revolution per floor. Then, the parametric equations of the spiral are:
![x = r\cdot \cos \theta](https://img.qammunity.org/2021/formulas/mathematics/college/hozr5ay7z9h8vt73ufac88thw95yvz980r.png)
![y = r\cdot \sin \theta](https://img.qammunity.org/2021/formulas/mathematics/college/431ij7a24n9ivuayd4nu2100j4m7be7n27.png)
![z = \Delta h \cdot (\theta)/(2\pi)](https://img.qammunity.org/2021/formulas/mathematics/college/62po9ujtnhh3zuz2n8zh25sm6ks0uwgvcm.png)
Length of the staircase can be modelled by using the formula for arc length:
![\Delta s = \int\limits^(20\pi)_(0) {\sqrt{\left((dx)/(d\theta) \right) ^(2)+\left((dy)/(d\theta) \right)^(2)+\left((dz)/(d\theta)\right)^(2)}} \, d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/5k6mcy8ar38byrylwiy5bdezqlvuu3uj5m.png)
![\Delta s = \int\limits^(20\pi)_(0) {\sqrt{\left(-r\cdot \sin \theta\right)^(2)+\left(r\cdot \cos \theta\right)^(2)+\left((\Delta h)/(2\pi) \right)^(2)} } \, d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/sjgx4ikibazy4rljavyrg9bhtkjsskjie4.png)
![\Delta s = \int\limits^(20\pi)_(0) {\sqrt{r^(2)+((\Delta h)^(2))/(4\pi^(2)) }} \, d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/2artwilikj82hyq8uvl0rg6xq9x3tsm1r6.png)
![\Delta s = \sqrt{(12\,m)^(2)+((3\,m)^(2))/(4\pi^(2)) } \cdot (20\pi-0)](https://img.qammunity.org/2021/formulas/mathematics/college/wsph0h1g70jzf9fgcvdgbkdptuxxlbdbd4.png)
![\Delta s \approx 754.579\,m](https://img.qammunity.org/2021/formulas/mathematics/college/8qdna7v71czeaopjomuptgck0hwnt8xvqh.png)