Cone details:
Sphere details:
================
From the endpoints (EO, UO) of the circle to the center of the circle (O), the radius is will be always the same.
Using Pythagoras Theorem
(a)
TO² + TU² = OU²
(h-10)² + r² = 10² [insert values]
r² = 10² - (h-10)² [change sides]
r² = 100 - (h² -20h + 100) [expand]
r² = 100 - h² + 20h -100 [simplify]
r² = 20h - h² [shown]
r = √20h - h² ["r" in terms of "h"]
(b)
volume of cone = 1/3 * π * r² * h
===========================
![\longrightarrow \sf V = (1)/(3) * \pi * (√(20h - h^2))^2 \ ( h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u7qin7udy7ohv5t3ys6owz8rlodywurgjt.png)
![\longrightarrow \sf V = (1)/(3) * \pi * (20h - h^2) (h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tjh02xgc39m0g66mq4at1ydb9sx63b0kce.png)
![\longrightarrow \sf V = (1)/(3) * \pi * (20 - h) (h) ( h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u6ib49dx61bma5j7qi0cldnc3z5tvs75mo.png)
![\longrightarrow \sf V = (1)/(3) \pi h^2(20-h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1lzfje9s072zsee1bbxhkn4n8tdyb4md5w.png)
To find maximum/minimum, we have to find first derivative.
(c)
First derivative
![\Longrightarrow \sf V' =(d)/(dx) ( (1)/(3) \pi h^2(20-h) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/s2za70j99usmczfcqrhj0pxqxgw5mh6k1o.png)
apply chain rule
![\sf \Longrightarrow V'=(\pi \left(40h-3h^2\right))/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r6memtxev1jtn24vgs9z0p1t2be6e3tjih.png)
Equate the first derivative to zero, that is V'(x) = 0
![\Longrightarrow \sf (\pi \left(40h-3h^2\right))/(3)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/scfnfej8zrt9py626igh8fzan6vy1aelak.png)
![\Longrightarrow \sf 40h-3h^2=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/318k08lrpt2ntvmo6fcu3zz5f1838q7u7u.png)
![\Longrightarrow \sf h(40-3h)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/vmog8ksub80op39mhjnr1es4nka3z5hted.png)
![\Longrightarrow \sf h=0, \ 40-3h=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/gponhibavsvkzos29ba5i9b2kkoo94sje6.png)
![\Longrightarrow \sf h=0,\:h=(40)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rax7o4lg4bzyrvdtb8wku7j7o1wldyac0h.png)
maximum volume: when h = 40/3
![\sf \Longrightarrow max= (1)/(3) \pi ((40)/(3) )^2(20-(40)/(3) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/7anf1qsq7dzmnqja6en0bowybvmf30r45i.png)
![\sf \Longrightarrow maximum= 1241.123 \ cm^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/7g8nsirjbst1esa8r1jrnjn18rp0ymcj11.png)
minimum volume: when h = 0
![\sf \Longrightarrow min= (1)/(3) \pi (0)^2(20-0)](https://img.qammunity.org/2023/formulas/mathematics/high-school/w4ejcos1ny9y6i1pg2r4dw2tc4fefcgceu.png)
![\sf \Longrightarrow minimum=0 \ cm^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/f2tnovz8dof3u6wyf8ax9f3upjoxm9jj4i.png)