Answer:
Step-by-step explanation:
A target shooting machine launches them at an angle of 45 ° to the ground and at an initial speed of 100 km / h. What maximum height will the dishes reach? What will be its maximum range?
Given that,
Then initial speed is 100km/hr
U = 100km/hr
U = 100×1000 / 3600
U = 27.78 m/s
And the angle of projection is 45°
θ = 45°
A. Maximum height?
The maximum height is given as
H = U²•Sin²θ / 2g
g = 9.81m/s²
Then,
H = 27.78² Sin²45 / 2 × 9.81
H = 27.78² × Sin45 × Sin45 / 19.62
H = 19.66 m
B. Maximum range R?
The range can be calculated using
R = U² Sin2θ / g
Rmax = U² / g
We can have maximum range when θ = 45°, and since θ is given to be 45°, then, we can use maximum range formula
R = U² / g
R = 27.78²/9.81
R = 78.65 m
The maximum range is 78.65m
Spanish
Dado que,
Entonces la velocidad inicial es de 100 km / h
U = 100 km / h
U = 100 × 1000/3600
U = 27.78 m / s
Y el ángulo de proyección es de 45 °
θ = 45 °
A. Altura máxima?
La altura máxima se da como
H = U² • Sin²θ / 2g
g = 9.81m / s²
Entonces,
H = 27.78² Sin²45 / 2 × 9.81
H = 27.78² × Sin45 × Sin45 / 19.62
H = 19.66 m
B. Rango máximo R?
El rango se puede calcular usando
R = U² Sin2θ / g
Rmáx = U² / g
Podemos tener un rango máximo cuando θ = 45 °, y dado que θ es 45 °, entonces, podemos usar la fórmula de rango máximo
R = U² / g
R = 27.78² / 9.81
R = 78.65 m
El alcance máximo es de 78.65 m.