LFinal answer:
In chemical reactions, a change in volume affects the position of equilibrium based on stoichiometry. Increasing volume results in a shift towards the side with more gaseous molecules for reactions with Δn not equal to zero, while there is no shift if Δn equals zero. The direction of the shift is to decrease the reaction quotient (Q) in order to re-establish equilibrium with the equilibrium constant (K).
Step-by-step explanation:
The effect of volume change on the position of equilibrium in chemical reactions is dependent on the stoichiometry and the reaction in question. For a reaction where Δn = -1, increasing the volume would result in a decrease in pressure and a shift towards the side with more moles of gas to re-establish equilibrium, typically the side with more molecules. However, if Δn = 0, an increase in volume has no effect on the equilibrium as there is no change in moles of gaseous substances on either side of the reaction. When Δn = +1, increasing the volume leads the equilibrium to shift towards the products, as this increases the total number of gaseous molecules which tends to lower the pressure.
When volume is increased and the reaction quotient Q becomes greater than the equilibrium constant K (Q > K), the reaction tends to shift towards the reactants to re-establish equilibrium. Conversely, when volume is decreased, and the pressure is increased, the reaction tends to shift towards the side of the reaction with fewer moles of gas.