The diameter of the tank is 24.80 ft
Explanation:
Given-
- A spherical tank holds 8,000 ft^3 of water
i.e. The volume of spherical tank = 8,000 ft^3
Now, the formula for finding volume of any spherical figure is-
![\boxed{\mathfrak{ \purple{volume \:of \: sphere = (4)/(3) \pi {r}^(3) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1jxcfqlyrtvq9vrglxshfwwye6bxwa2ino.png)
Therefore, substituting value, we get
![⇢8000 = (4)/(3) \pi {r}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yd994hh3hk7kb0s4n3xt5plom8tuja5e55.png)
![⇢8000 * (3)/(4 ) = (22)/(7) \pi {r}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pk0cd7qfr27tb07qzyk1hm111cq2fjnt3o.png)
Transposing 4/3 to left hand side ,it will become 3/4 . And Here, 8000 will get cancelled by 4 leaving 2000
![⇢2000 * 3 * (7)/(22) = {r}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/a9eld7m517xzmdfd0qjywoiitqkw7jacgk.png)
Similarly , On performing further calculations, we get. ..
![⇢ (21000)/(11) = {r}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yf53l24mcwkvv4bdnboxigmgigse579g3a.png)
![⇢1910.822 = {r}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kwsabmcrzzqu15cwo2klpjb8wd3o8q5e6v.png)
![⇢ \sqrt[3]{1910.822} = r](https://img.qammunity.org/2023/formulas/mathematics/high-school/moaurb0h50qykezoep5j19bie25x6k9mse.png)
![⇢ \underline{12.40 = r}](https://img.qammunity.org/2023/formulas/mathematics/high-school/69bi64yr2gs8oz4tp8oq9o8es9n6305yts.png)
Thus, the radius of the tank is 12.40 ft
Now,
The diameter of the tank = 2 × radius
![\: \: \: \: \: \: \: \: \: \: \: \: = 2 * 12.40](https://img.qammunity.org/2023/formulas/mathematics/high-school/u0tgxmny39piyetfdwbs9nall5sdw5pw0l.png)
![\: \: \: \: \: \: \: \: \: \: \: \: = 24.80](https://img.qammunity.org/2023/formulas/mathematics/high-school/s8hwchvxwbi5ke74ip5mqmkzfxi4zzbm3v.png)
•°• The diameter of the tank comes out 24.80 ft