Answer:
None of the options are correct
Explanation:
Given
![f(q) = q^2 - 125](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v2il7y76mybakggzuvgs5fdnamspelpy15.png)
Required
The roots of the function
Since the function is a quadratic function; to get the roots of the function, f(q) must be equal to 0
becomes
![0 = q^2 - 125](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wdeoj9b6pjhtdxfn873ut56tqhpavtnkwt.png)
Make
the subject of formula
![125= q^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hqo45q2svpjbjtnzmj4wli41iq8gxr8391.png)
Rearrange
![q^2 = 125](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8casnkfhqkm38q85wqj99kahdkjq4dnzxn.png)
Take square roots of both sides
![√(q^2) = √(125)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ndr9r3chsnb1c80tftmoumzc5w3t8yppff.png)
![q = √(125)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/elhnfsdyfxq62aki1ys1prur41bpung2km.png)
Expand the square root of 125
![q = √(25 * 5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m9n6t4h4xoepvs863hvjykl59gtw8l0cov.png)
![q = √(25) * √(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kypxyqd1pwwdz25qndu8kx5xe8ukksfkhi.png)
q = ±5
![* √(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rxuohrnzv55inhym4bjq27on6qi739exxd.png)
Split into 2
or
![q = -5 * √(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gja0mns496lbjxvnlzpuylprwy0tiviri5.png)
or
![q = -5 √(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ikyit6fphgv441irn5l2omvy0cwsc246li.png)
Hence, the roots of the quadratic function are
or
![q = -5 √(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ikyit6fphgv441irn5l2omvy0cwsc246li.png)