156k views
1 vote
Points A and B lie on a circle with radius 1, and arc ⌢ AB has a length of π3. What fraction of the circumference of the circle is the length of arc ⌢ AB?

2 Answers

1 vote

Answer:

1/6

Step-by-step explanation:

The circumference of a circle is denoted by:
C=2\pi r, where r is the radius. Here, r = 1, so plug this in:


C=2\pi r


C=2\pi *1=2\pi units

Now, we know that arc AB has a length of
\pi /3 and we want to find the fraction of the circumference this is. So, divide
\pi /3 by
2\pi:


(\pi /3)/(2\pi )=(\pi )/(3*2\pi )=(\pi )/(6\pi ) =1/6

Thus, the fraction is 1/6.

Hope this helps!

User Timesha
by
4.7k points
5 votes

Answer:

arc AB =1/6 circumference

Step-by-step explanation:

The circumference of a circle with radius r = 1

has a length C 1 =2r π =2 π

An arc length of π/3

represents π/3/2π = 1/3/2 +1/ 6 of this circumference

Sorry all those //// are those fraction line but i couldn't find them in these symbols hope this helpful.I get it.

User Miniwark
by
4.4k points