163k views
4 votes
You have a piece of string that measures 36 yards. What is the area of the largest rectangle you can make with the string?

1 Answer

2 votes

Explanation:

Given that the perimeter of the rectangle is = 36 yards

For a rectangle perimeter =

L+L+B+B =

2L+2B =36

Factoring 2 out we have

2(L+B)= 36

L+B= 36/2

L+B=18

we know that the area of a rectangle is given as

A= L*B

The maximum area is gotten when

L=B

And when B*B= 36

B*B=36

B^2=36

B=√36

B=6 yards

Substituting B= yards in the expression for perimeter we have

To find L

L +B=18

L+6=18

L=18-6

L= 12

Hence the largest area is

A= 12*6= 72 yard^2

User Kern Cheh
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories