182k views
5 votes
If a substance decays at a rate of 25% every 10 years, how long will it take 512 grams of the substance to decay to 121.5 grams

User Iqbal
by
5.1k points

1 Answer

5 votes

Answer:

It will take 50 years to decay from 512 grams to 121.5 grams.

Explanation:

The decay formula :


N=N_0e^(-\lambda t)

where

N= amount of substance after t time

N₀= initial of substance

t= time.

A substance decays at a rate 25% every 10 years.

So, remaining amount of the substance is = (100%-25%)= 75%


(N)/(N_0)=(75\%)/(100\%)=(75)/(100)=\frac34, t= 10


N=N_0e^(-\lambda t)


\Rightarrow \frac {N}{N_0}=e^(-\lambda t)


\Rightarrow \frac34 =e^(-\lambda .10)

Taking ln both sides


\Rightarrow ln|\frac34| =ln|e^(-\lambda .10)|


\Rightarrow ln|\frac34|=-10\lambda


\Rightarrow \lambda=( ln|\frac34|)/(-10)

Now , N₀= 512 grams, N= 121.5 grams, t=?


N=N_0e^(-\lambda t)


\therefore 121.5=512e^\frac34


\Rightarrow 121.5=512e^(ln


\Rightarrow (121.5)/(512)=e^(ln

Taking ln both sides


\Rightarrow ln|(121.5)/(512)|=ln|e^\frac34|


\Rightarrow ln|(121.5)/(512)|=\frac34


\Rightarrow t=(ln|(121.5)/(512)|)/((ln|\frac34|)/(10))


\Rightarrow t=\frac10.ln{ln}

⇒t=50 years

It will take 50 years to decay from 512 grams to 121.5 grams.

User Matt Adams
by
6.3k points