Answer:
a) a = 2.89 m/s²
b) t ≈ 6 s
Step-by-step explanation:
Given
h = 8 m
R = 20 m
x = 50 m
v₀ = 0 m/s
v = 17 m/s
m = 1600 kg
a) We can apply the kinematic equation
v² = v₀²+2ax
then
a = (v²-v₀²)/(2x)
⇒ a = ((17 m/s)²-(0 m/s)²)/(2*50 m)
⇒ a = 2.89 m/s²
Now, we can find the normal acceleration as follows
aₙ = v²/R
⇒ aₙ = (17 m/s)²/(20 m)
⇒ aₙ = 14.45 m/s²
Since a < aₙ (2.89 m/s² < 14.45 m/s²) the car will not reach the top of the hill.
b) We can get the time using the kinematic equation
v = v₀+at
⇒ t = (v-v₀)/a
⇒ t = (17 m/s-0 m/s)/(2.89 m/s²)
⇒ t = 5.88 s ≈ 6 s