Answer:
a) x = 5 10 15 20
P(X) = 0.1 0.2 0.3 0.4
P(Y) = 0.25 0.25 0.25 0.25
b) E(X) = 15
E(Y) = 12.5
c) Var(X) = 25
Var(Y) = 31.25
Explanation: E(X) = xP(x) ; E(Y) = xP(Y) ; Var(X) = sum(x^2P(x)) - (E(X))^2 ; Var(Y) = sum(x^2P(y)) - (E(Y))^2
x = 5 10 15 20
P(X) = 0.1 0.2 0.3 0.4
P(Y) = 0.25 0.25 0.25 0.25
b) E(X) = (5 x 0.1) +(10 x 0.2) + (15 x 0.3) + (20 x 0.4)
= 0.5 + 2 + 4.5 + 8
E(X) = 15
E(Y) = (5 x 0.25) +(10 x 0.25) + (15 x 0.25) + (20 x 0.25)
= 1.25 + 2.5 + 3.75 + 5
E(Y) = 12.5
c) Var(X) = ( (5^2 x 0.1) + (10^2 x 0.2) +( 15^2 x 0.3) + (20^2 x 0.4) ) - (15^2)
= 250 - 225
Var(X) = 25
Var(Y)
= ( (5^2 x 0.25) + (10^2 x 0.25) +( 15^2 x 0.25) + (20^2 x 0.25) ) - (12.5^2)
= 187.5 - 156.25
Var(Y) = 31.25