Answer:
4*10^22 photons
Step-by-step explanation:
To find the number of photons is necessary to calculate the total energy of the light emitted in one hour = 3600s:
![E'=0.05E=0.05Pt=0.05(75J/s)(3600s)=13.500J](https://img.qammunity.org/2021/formulas/physics/college/3euqhewp93b8rtqojr9fmpjxerd9f15ose.png)
Furthermore, is necessary to find the associated energy to the photon 0f 570nm with following formula:
![E'=h\\u=h(c)/(\lambda)](https://img.qammunity.org/2021/formulas/physics/college/kkir3lnxx0fbrkfymmjhvvacsexvr68pye.png)
h: Planck's constant = 6.62*10^-34 Js
c: speed of light = 3*10^8 m/s
wavelength = 570*10^-9 m
![E_p=(6.62*10^(-34)Js)(3*10^(8)m/s)/(570*10^(-9)m)=3.484*20^(-29)J](https://img.qammunity.org/2021/formulas/physics/college/jypgnkmjuozkkv9thno8ldb0jvfal803z2.png)
Finally you divide E' between Ep to find the number of photons:
![n=(E')/(E_p)=(13.500J)/(3.484*10^(-19))\approx4*10^(22)photons](https://img.qammunity.org/2021/formulas/physics/college/ocg02rgbbzf9eeaweagshtxwcj4vj2pwhm.png)
the number of emitted photons is 4*10^22