Answer:
a) Maximum altitude of the projectile,
![h = 2.83 * 10^5 m](https://img.qammunity.org/2021/formulas/physics/middle-school/hqh3aclx2ptgs255upok66vddwrx71edbq.png)
b) v = 10885.7 m/s
Step-by-step explanation:
a) Mass of the earth,
![m_(1) = 5.98 * 10^(24) kg](https://img.qammunity.org/2021/formulas/physics/middle-school/1w9x3684d7jheeb73jald999e29du5v3fe.png)
Mass of the projectile =
![m_(2)](https://img.qammunity.org/2021/formulas/physics/high-school/qpd86rp7z82de1yuc1xgzc9a46qdbrfva0.png)
Launch speed, v = 2.31 * 10³ m/s
Earth radius, r = 6.36 ✕ 10⁶ m
Workdone by the projectile against gravity
![W = Gm_(1) m_(2) ((1)/(r) - (1)/(r+h) )\\W = 5.98 * 10^(24) *6.67 * 10^(-11) m_(2) ((1)/(6.36*10^(6) ) - (1)/(r+h) )\\](https://img.qammunity.org/2021/formulas/physics/middle-school/3g92wtrlqimx0pxg0e1fet1ej0yud784sv.png)
...............(1)
Kinetic energy of the projectile:
![KE = (1)/(2) m_(2) v^(2)](https://img.qammunity.org/2021/formulas/physics/middle-school/cndxmmjwk2azadrgyqkfm52ndd93pkrojc.png)
...................(2)
Equating (1) and (2) based on the law of energy conservation
![398866 * 10^(9) m_(2)((1)/(6.36*10^(6) ) - (1)/(r+h) ) = 2668050 m_(2)\\(1)/(6.36*10^(6) ) - (1)/(r+h) = 0.00000000669\\0.00000015723 - 0.00000000669 = (1)/(r+h)\\0.00000015054 = (1)/((6.36*10^(6)) +h)\\(6.36*10^(6)) +h = 6642633.424\\h = 6642633.424 - (6.36*10^(6))\\h = 282633.42 m\\h = 2.83 * 10^5 m](https://img.qammunity.org/2021/formulas/physics/middle-school/e4257flja7pq0s1sffpcl5mxksbex2yhx2.png)
b) Smallest required change in the satellite speed
Altitude, h = 352 km = 352000 m
Earth radius, r = 6.38 * 10⁶ m
![v = \sqrt{(2Gm_(1) )/((r+h)) } \\v = \sqrt{(2* 6.67 * 10^(-11) *5.98*10^(24) )/((6.38*10^6+352*10^3)) }](https://img.qammunity.org/2021/formulas/physics/middle-school/h7ck862w14y4ld34l32lcqwc2nqxycjneu.png)
v = 10885.7 m/s