Answer:
(-3,1)
Explanation:
First we need to know the distance between E and F, and the distance betweem F and G:
d(E,F) = sqrt((5-0)^2 + (5-5)^2) = 5
d(F,G) = sqrt((5-1)^2 + (5-1)^2) = 5.6569
The other distances are d(G,H) and d(H,E).
So, if we choose the point H = (-3,1), we have:
d(G,H) = sqrt((1+3)^2 + (1-1)^2) = 4
d(H,E) = sqrt((-3-0)^2 + (1-5)^2) = 5
Total fencing = 5 + 5.6569 + 4 + 5 = 19.6569 < 20
This point can be chosen.
If we take H = (-3,-1):
d(G,H) = sqrt((1+3)^2 + (1+1)^2) = 4.4721
d(H,E) = sqrt((-3-0)^2 + (-1-5)^2) = 6.7082
Total fencing = 5 + 5.6569 + 4.4721 + 6.7082 = 21.8372 > 20
This point can't be chosen.
If we take H = (-5,1):
d(G,H) = sqrt((1+5)^2 + (1-1)^2) = 6
d(H,E) = sqrt((-5-0)^2 + (1-5)^2) =6.4031
Total fencing = 5 + 5.6569 + 6 + 6.4031 = 23.06 > 20
This point can't be chosen.
If we take H = (-5,-1):
d(G,H) = sqrt((1+5)^2 + (1+1)^2) = 6.3246
d(H,E) = sqrt((-5-0)^2 + (-1-5)^2) = 7.8102
Total fencing = 5 + 5.6569 + 6.3246 + 7.8102 = 24.7917 > 20
This point can't be chosen.
So the point Alex should place point H is (-3,1)