Answer:
2sin(x) + 2sin(5x)
Explanation:
4sin(x)cos(2x)
=4sin(2x+x)cos(x+x) = 4[sin(2x)cos(x)+cos(2x)sin(x)]
= 4sin(2x)cos(x) + 4sin(x)cos(2x)
= 4sin(x+x)cos(x) + 4sin(x)cos(x+x)
= 2sin(x) + 2sin(5x)
5.9m questions
7.7m answers