Answer:
![(a)/(a - 4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/udlair0bfl62nlchpmvj75v2y0q14zio7q.png)
Explanation:
You are subtracting fractions, so as usual with fraction subtraction, you need a common denominator. To get a common denominator, you need to factor each denominator.
![(3a)/(a + 4) - (2a^2 - 16a)/(a^2 - 16) =](https://img.qammunity.org/2023/formulas/mathematics/high-school/e890fqn2d1a6j8oh15qwkhhi4hx7izv3me.png)
Factor the right denominator. It is a difference of two squares.
![= (3a)/(a + 4) - (2a^2 - 16a)/((a - 4)(a + 4))](https://img.qammunity.org/2023/formulas/mathematics/high-school/6orf9yqq2zm4krmkevnsc2e4xwepsobuf7.png)
The left denominator is (a + 4). The right denominator is (a - 4)(a + 4). The LCD is (a - 4)(a + 4), so multiply the left fraction by (a - 4)/(a - 4).
![= (3a)/(a + 4) * (a - 4)/(a - 4) - (2a^2 - 16a)/((a - 4)(a + 4))](https://img.qammunity.org/2023/formulas/mathematics/high-school/m4woq78jbjpce0l84fjjj2lb7vehcxbb2l.png)
![= (3a^2 - 12a)/((a - 4)(a + 4)) - (2a^2 - 16a)/((a - 4)(a + 4))](https://img.qammunity.org/2023/formulas/mathematics/high-school/dr5bw7ip1nw440f71rri3c25lyigfwnzdq.png)
Be careful when you do the subtraction of the numerators, 3a² - 12a minus 2a² - 16a. 3a² - 12a - (2a² - 16a). The minus of the subtraction changes each sign inside the parentheses, so you end up with 3a² - 12a - 2a² + 16a. Be especially careful with the +16a.
![= (3a^2 - 12a - (2a^2 - 16a))/((a - 4)(a + 4))](https://img.qammunity.org/2023/formulas/mathematics/high-school/43yy5cyqobtuvxrkqmer0ys7hrm7ojoac8.png)
![= (3a^2 - 12a - 2a^2 + 16a)/((a - 4)(a + 4))](https://img.qammunity.org/2023/formulas/mathematics/high-school/zuc1g62s13autwhfa8aezsvl1l5q13rlem.png)
![= (a^2 + 4a)/((a - 4)(a + 4))](https://img.qammunity.org/2023/formulas/mathematics/high-school/ewz5co9b687rfz06rclz5512ha8yrybwqx.png)
![= (a(a + 4))/((a - 4)(a + 4))](https://img.qammunity.org/2023/formulas/mathematics/high-school/heop9dmkx0f9mscankl20m133r41n5uqhb.png)
![= (a)/(a - 4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4y1afo5ko6eayfnxjgqvh6dhwf4ihm1rm3.png)