Answer:
a^1/12 or choice A
Explanation:
Given:
![\displaystyle \large{\frac{a^{(1)/(3)}}{a^{(1)/(4)}}}](https://img.qammunity.org/2023/formulas/mathematics/college/4bocdd49505thkfce21f4aaq4limxm43cg.png)
Law of Exponent (Division Property):
![\displaystyle \large{(a^m)/(a^n) = a^(m-n)}](https://img.qammunity.org/2023/formulas/mathematics/college/ba3oajmu173p87zfxatddczich9440lzwr.png)
Therefore:
![\displaystyle \large{a^{(1)/(3)-(1)/(4)}}](https://img.qammunity.org/2023/formulas/mathematics/college/lf8hqnd02ecrs9sff5ffwvraibehvbaqew.png)
Then evaluate the fractions. Keep in mind that we can only evaluate fractions with same denominator. Therefore, calculate the LCM of 3,4 which is 12:
![\displaystyle \large{a^{(4)/(12)-(3)/(12)} = a^{(1)/(12)}}](https://img.qammunity.org/2023/formulas/mathematics/college/d50cpvaq7xwc1gsaujhnjawixvwc1zaqn2.png)
Therefore, the solution is a^1/12 or choice A