224k views
2 votes
If the length of the square is increased by 2 and the width is decreased by 2, by how many units is the area of

the square bigger than the area of the new rectangle?​

1 Answer

3 votes

Answer:

4 units

Explanation:

Let x represent the length of the square

Area of the square = x^2

So, the dimension of the rectangle formed is:

length = x + 2

width = x - 2

Area of the rectangle = ( x + 2 ) * ( x - 2 )

solve the parenthesis

x^2 - 2x + 2x - 4

Area of the rectangle = x^2 - 4

subtract this area from that of the square

x^2 - ( x^2 - 4 )

=x^2 - x^2 + 4

= 4 units

User Avtar Guleria
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories